CcpA Mediates the Catabolite Repression of tst in Staphylococcus aureus
نویسندگان
چکیده
منابع مشابه
CcpA mediates the catabolite repression of tst in Staphylococcus aureus.
Some clinical isolates of Staphylococcus aureus produce the superantigenic toxic shock syndrome toxin 1 (TSST-1), encoded by tst, located on pathogenicity islands. The expression of tst is complex and is influenced by environmental conditions such as pH, CO(2), and glucose. We identified a putative catabolite-responsive element (cre) in the promoter regions of all known tst genes, indicating th...
متن کاملCarbon catabolite repression by the catabolite control protein CcpA in Staphylococcus xylosus.
Carbon catabolic repression (CR) by the catabolite control protein CcpA has been analyzed in Staphylococcus xylosus. Genes encoding components needed to utilize lactose, sucrose, and maltose were found to be repressed by CcpA. In addition, the ccpA gene is under negative autogenous control. Among several tested sugars, glucose caused strongest CcpA-dependent repression. Glucose can enter S. xyl...
متن کاملCcpA-dependent carbon catabolite repression in bacteria.
Carbon catabolite repression (CCR) by transcriptional regulators follows different mechanisms in gram-positive and gram-negative bacteria. In gram-positive bacteria, CcpA-dependent CCR is mediated by phosphorylation of the phosphoenolpyruvate:sugar phosphotransferase system intermediate HPr at a serine residue at the expense of ATP. The reaction is catalyzed by HPr kinase, which is activated by...
متن کاملCcpA-independent carbon catabolite repression in Bacillus subtilis.
The past decade has witnessed an exiting unveiling of numerous molecular mechanisms that characterize signal transduction by protein-protein interaction. The recent findings encouraged an increasing effort to understand the sequential metabolism of different sugars available as energy sources at the same time. It seems probable that at least three principle mechanisms which act together or sepa...
متن کاملCcpA Regulates Arginine Biosynthesis in Staphylococcus aureus through Repression of Proline Catabolism
Staphylococcus aureus is a leading cause of community-associated and nosocomial infections. Imperative to the success of S. aureus is the ability to adapt and utilize nutrients that are readily available. Genomic sequencing suggests that S. aureus has the genes required for synthesis of all twenty amino acids. However, in vitro experimentation demonstrates that staphylococci have multiple amino...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Infection and Immunity
سال: 2008
ISSN: 0019-9567,1098-5522
DOI: 10.1128/iai.00724-08